Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.916
Filtrar
1.
BMC Pediatr ; 24(1): 226, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561731

RESUMO

BACKGROUND: Dilated cardiomyopathy (DCM) commonly leads to heart failure (HF) and represents the most common indication for cardiac transplantation in the pediatric population. Clinical manifestations of DCM are mainly the symptoms of heart failure; it is diagnosed by EKG, chest x-ray and echocardiography. For the idiopathic and familial diseases cases of DCM, there are no definite guidelines for treatment in children as they are treated for prognostic improvement. CASE PRESENTATION: We report the case of a 2-year-old girl diagnosed with dilated cardiomyopathy associated with homozygous mutation in the Myosin Light Chain 3 gene admitted for edema in lower extremities, muscle weakness, lethargy and vomiting, and she was found to be in cardiogenic shock. Chest x-ray showed cardiomegaly and EKG showed first degree atrioventricular block. Echocardiogram showed severe biventricular systolic and diastolic dysfunction. After 70 days of hospitalization, the patient went into cardiac arrest with cessation of electrical and mechanical activity of the heart, despite cardiopulmonary resuscitative efforts. CONCLUSION: Although rare, pediatric DCM carries a high risk of morbidity and mortality and a lack of curative therapy.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Transplante de Coração , Pré-Escolar , Feminino , Humanos , Cardiomiopatia Dilatada/genética , Ecocardiografia , Insuficiência Cardíaca/genética
2.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612618

RESUMO

Dilated cardiomyopathy is a heterogeneous entity that leads to heart failure and malignant arrhythmias. Nearly 50% of cases are inherited; therefore, genetic analysis is crucial to unravel the cause and for the early identification of carriers at risk. A large number of variants remain classified as ambiguous, impeding an actionable clinical translation. Our goal was to perform a comprehensive update of variants previously classified with an ambiguous role, applying a new algorithm of already available tools. In a cohort of 65 cases diagnosed with dilated cardiomyopathy, a total of 125 genetic variants were classified as ambiguous. Our reanalysis resulted in the reclassification of 12% of variants from an unknown to likely benign or likely pathogenic role, due to improved population frequencies. For all the remaining ambiguous variants, we used our algorithm; 60.9% showed a potential but not confirmed deleterious role, and 24.5% showed a potential benign role. Periodically updating the population frequencies is a cheap and fast action, making it possible to clarify the role of ambiguous variants. Here, we perform a comprehensive reanalysis to help to clarify the role of most of ambiguous variants. Our specific algorithms facilitate genetic interpretation in dilated cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Humanos , Cardiomiopatia Dilatada/genética , Algoritmos , Frequência do Gene
4.
J Am Coll Cardiol ; 83(17): 1640-1651, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38658103

RESUMO

BACKGROUND: Disease penetrance in genotype-positive (G+) relatives of families with dilated cardiomyopathy (DCM) and the characteristics associated with DCM onset in these individuals are unknown. OBJECTIVES: This study sought to determine the penetrance of new DCM diagnosis in G+ relatives and to identify factors associated with DCM development. METHODS: The authors evaluated 779 G+ patients (age 35.8 ± 17.3 years; 459 [59%] females; 367 [47%] with variants in TTN) without DCM followed at 25 Spanish centers. RESULTS: After a median follow-up of 37.1 months (Q1-Q3: 16.3-63.8 months), 85 individuals (10.9%) developed DCM (incidence rate of 2.9 per 100 person-years; 95% CI: 2.3-3.5 per 100 person-years). DCM penetrance and age at DCM onset was different according to underlying gene group (log-rank P = 0.015 and P <0.01, respectively). In a multivariable model excluding CMR parameters, independent predictors of DCM development were: older age (HR per 1-year increase: 1.02; 95% CI: 1.0-1.04), an abnormal electrocardiogram (HR: 2.13; 95% CI: 1.38-3.29); presence of variants in motor sarcomeric genes (HR: 1.92; 95% CI: 1.05-3.50); lower left ventricular ejection fraction (HR per 1% increase: 0.86; 95% CI: 0.82-0.90) and larger left ventricular end-diastolic diameter (HR per 1-mm increase: 1.10; 95% CI: 1.06-1.13). Multivariable analysis in individuals with cardiac magnetic resonance and late gadolinium enhancement assessment (n = 360, 45%) identified late gadolinium enhancement as an additional independent predictor of DCM development (HR: 2.52; 95% CI: 1.43-4.45). CONCLUSIONS: Following a first negative screening, approximately 11% of G+ relatives developed DCM during a median follow-up of 3 years. Older age, an abnormal electrocardiogram, lower left ventricular ejection fraction, increased left ventricular end-diastolic diameter, motor sarcomeric genetic variants, and late gadolinium enhancement are associated with a higher risk of developing DCM.


Assuntos
Cardiomiopatia Dilatada , Genótipo , Penetrância , Humanos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Seguimentos , Espanha/epidemiologia , Eletrocardiografia , Conectina/genética
5.
Int Heart J ; 65(2): 254-262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556335

RESUMO

To date, whether there is any causal relationship between dilated cardiomyopathy (DCM) and the changes in the levels/expression of immune cells/cytokines is still unclear. This study aimed to investigate the causal relationship between the levels of various types of immune cells/cytokines and DCM. Herein, two-sample Mendelian randomization (MR) (TSMR) using R software was conducted. Single nucleotide polymorphisms (SNPs) related to the levels of various types of immune cells/cytokines and DCM were screened based on the genome-wide association studies (GWAS) obtained from open-source databases. The TSMR was conducted using inverse variance weighted (IVW), method, MR-Egger regression, weighted median method, and simple estimator based on mode to explore the causal association between the levels of each immune cell/cytokine and DCM. Sensitivity analysis was conducted using MR-Egger regression and a leave-one-out sensitivity test. A total of 1816 SNPs related to host immune status and DCM were identified. The IVW results showed a relationship between DCM and the circulating levels of basophils/eosinophils, total eosinophils-basophils, lymphocytes, and C-reactive protein (CRP). Increased lymphocytes levels (odds ratio (OR) = 0.91, 95% confidence interval (CI): 0.84-0.97, P = 0.005) were seen as protective against DCM, whereas increased basophil (OR = 1.18, 95% CI: 1.04-1.33, P = 0.022), eosinophil (OR = 1.1, 95% CI: 1.03-1.17, P = 0.007), eosinophil-basophil (OR = 1.09, 95% CI: 1.02-1.17, P = 0.014), and CRP (OR = 1.1, 95% CI: 1.03-1.18, P = 0.013) levels were associated with an increased risk of DCM. These analyses revealed that there may be a relationship between immune cells/select cytokine status and the onset of DCM. Future studies are required to further validate these outcomes in animal models and clinical trials.


Assuntos
Cardiomiopatia Dilatada , Animais , Cardiomiopatia Dilatada/genética , Estudo de Associação Genômica Ampla , Proteína C-Reativa , Causalidade , Citocinas
7.
Neuromuscul Disord ; 37: 1-5, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430701

RESUMO

This report describes a novel TTN -related phenotype in two brothers, both affected by a childhood onset, very slowly progressive myopathy with cores, associated with dilated cardiomyopathy only in their late disease stages. Clinical exome sequencing documented in both siblings the heterozygous c.2089A>T and c.19426+2T>A variants in TTN. The c.2089A>T, classified in ClinVar as possibly pathogenic, introduces a premature stop codon in exon 14, whereas the c.19426+2T>A affects TTN alternative splicing. The unfeasibility of segregation studies prevented us from establishing the inheritance mode of the muscle disease in this family, although the lack of any reported muscle or heart symptoms in both parents might support an autosomal recessive transmission. In this view, the occurrence of cardiomyopathy in both probands might be related to the c.2089A>T truncating variant in exon 14, and the childhood onset, slowly progressive myopathy to the c.19426+2T>A splicing variant, possibly allowing translation of an almost full length TTN protein.


Assuntos
Cardiomiopatia Dilatada , Doenças Musculares , Masculino , Humanos , Criança , Conectina/genética , Doenças Musculares/genética , Fenótipo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Códon sem Sentido , Mutação
8.
Life Sci Alliance ; 7(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438248

RESUMO

Myocardial lipid metabolism is critical to normal heart function, whereas altered lipid regulation has been linked to cardiac diseases including cardiomyopathies. Genetic variants in the JPH2 gene can cause hypertrophic cardiomyopathy (HCM) and, in some cases, dilated cardiomyopathy (DCM). In this study, we tested the hypothesis that JPH2 variants identified in patients with HCM and DCM, respectively, cause distinct alterations in myocardial lipid profiles. Echocardiography revealed clinically significant cardiac dysfunction in both knock-in mouse models of cardiomyopathy. Unbiased myocardial lipidomic analysis demonstrated significantly reduced levels of total unsaturated fatty acids, ceramides, and various phospholipids in both mice with HCM and DCM, suggesting a common metabolic alteration in both models. On the contrary, significantly increased di- and triglycerides, and decreased co-enzyme were only found in mice with HCM. Moreover, mice with DCM uniquely exhibited elevated levels of cholesterol ester. Further in-depth analysis revealed significantly altered metabolites from all the lipid classes with either similar or opposing trends in JPH2 mutant mice with HCM or DCM. Together, these studies revealed, for the first time, unique alterations in the cardiac lipid composition-including distinct increases in neutral lipids and decreases in polar membrane lipids-in mice with HCM and DCM were caused by distinct JPH2 variants. These studies may aid the development of novel biomarkers or therapeutics for these inherited disorders.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Cardiopatias , Animais , Humanos , Camundongos , Cardiomiopatias/genética , Cardiomiopatia Dilatada/genética , Ceramidas , Proteínas de Membrana/genética , Miocárdio
10.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474032

RESUMO

Dystrophin (DMD) gene mutations are associated with skeletal muscle diseases such as Duchenne and Becker Muscular Dystrophy (BMD) and X-linked dilated cardiomyopathy (XL-DCM). To investigate the molecular basis of DCM in a 37-year-old woman. Clinical and genetic investigations were performed. Genetic testing was performed with whole exome sequencing (WES) using the Illumina platform. According to the standard protocol, a variant found by WES was confirmed in all available members of the family by bi-directional capillary Sanger resequencing. The effect of the variant was investigated by using an in silico prediction of pathogenicity. The index case was a 37-year-old woman diagnosed with DCM at the age of 33. A germline heterozygous A>G transversion at nucleotide 10103 in the DMD gene, leading to an aspartic acid-glycine substitution at the amino acid 3368 of the DMD protein (c.10103A>G p.Asp3368Gly), was identified and confirmed by PCR-based Sanger sequencing of the exon 70. In silico prediction suggests that this variant could have a deleterious impact on protein structure and functionality (CADD = 30). The genetic analysis was extended to the first-degree relatives of the proband (mother, father, and sister) and because of the absence of the variant in both parents, the p.Asp3368Gly substitution was considered as occurring de novo. Then, the direct sequencing analysis of her 8-year-old son identified as hemizygous for the same variant. The young patient did not present any signs or symptoms attributable to DCM, but reported asthenia and presented with bilateral calf hypertrophy at clinical examination. Laboratory testing revealed increased levels of creatinine kinase (maximum value of 19,000 IU/L). We report an early presentation of dilated cardiomyopathy in a 33-year-old woman due to a de novo pathogenic variant of the dystrophin (DMD) gene (p.Asp3368Gly). Genetic identification of this variant allowed an early diagnosis of a skeletal muscle disease in her son.


Assuntos
Cardiomiopatia Dilatada , Distrofia Muscular de Duchenne , Humanos , Feminino , Adulto , Criança , Distrofina/genética , Cardiomiopatia Dilatada/genética , Distrofia Muscular de Duchenne/genética , Mães
11.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474301

RESUMO

Familial dilated cardiomyopathy (DCM) is among the leading indications for heart transplantation. DCM alters the transcriptomic profile. The alteration or activation/silencing of physiologically operating transcripts may explain the onset and progression of this pathological state. The mediator complex (MED) plays a fundamental role in the transcription process. The aim of this study is to investigate the MED subunits, which are altered in DCM, to identify target crossroads genes. RNA sequencing allowed us to identify specific MED subunits that are altered during familial DCM, transforming into human myocardial samples. N = 13 MED subunits were upregulated and n = 7 downregulated. MED9 alone was significantly reduced in patients compared to healthy subjects (HS) (FC = -1.257; p < 0.05). Interestingly, we found a short MED9 isoform (MED9s) (ENSG00000141026.6), which was upregulated when compared to the full-transcript isoform (MED9f). Motif identification analysis yielded several significant matches (p < 0.05), such as GATA4, which is downregulated in CHD. Moreover, although the protein-protein interaction network showed FOG2/ZFPM2, FOS and ID2 proteins to be the key interacting partners of GATA4, only FOG2/ZFPM2 overexpression showed an interaction score of "high confidence" ≥ 0.84. A significant change in the MED was observed during HF. For the first time, the MED9 subunit was significantly reduced between familial DCM and HS (p < 0.05), showing an increased MED9s isoform in DCM patients with respect to its full-length transcript. MED9 and GATA4 shared the same sequence motif and were involved in a network with FOG2/ZFPM2, FOS, and ID2, proteins already implicated in cardiac development.


Assuntos
Cardiomiopatia Dilatada , Complexo Mediador , Humanos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Transplante de Coração , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo
12.
Biol Cell ; 116(3): e2300094, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38404031

RESUMO

BACKGROUND INFORMATION: Lamins are type V intermediate filament proteins underlying the inner nuclear membrane which provide structural rigidity to the nucleus, tether the chromosomes, maintain nuclear homeostasis, and remain dynamically associated with developmentally regulated regions of the genome. A large number of mutations particularly in the LMNA gene encoding lamin A/C results in a wide array of human diseases, collectively termed as laminopathies. Dilated Cardiomyopathy (DCM) is one such laminopathic cardiovascular disease which is associated with systolic dysfunction of left or both ventricles leading to cardiac arrhythmia which ultimately culminates into myocardial infarction. RESULTS: In this work, we have unraveled the epigenetic landscape to address the regulation of gene expression in mouse myoblast cell line in the context of the missense mutation LMNA 289A

Assuntos
Cardiomiopatia Dilatada , Animais , Humanos , Camundongos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/química , Lamina Tipo A/metabolismo , Mutação , NF-kappa B/genética , NF-kappa B/metabolismo , Lâmina Nuclear
13.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38412038

RESUMO

Allelic heterogeneity (AH) has been noted in truncational TTN-associated (TTNtv-associated) dilated cardiomyopathy (DCM); i.e., mutations affecting A-band-encoding exons are pathogenic, but those affecting Z-disc-encoding exons are likely benign. The lack of an in vivo animal model that recapitulates AH hinders the deciphering of the underlying mechanism. Here, we explored zebrafish as a candidate vertebrate model by phenotyping a collection of zebrafish ttntv alleles. We noted that cardiac function and sarcomere structure were more severely disrupted in ttntv-A than in ttntv-Z homozygous embryos. Consistently, cardiomyopathy-like phenotypes were present in ttntv-A but not ttntv-Z adult heterozygous mutants. The phenotypes observed in ttntv-A alleles were recapitulated in null mutants with the full titin-encoding sequences removed. Defective autophagic flux, largely due to impaired autophagosome-lysosome fusion, was also noted only in ttntv-A but not in ttntv-Z models. Moreover, we found that genetic manipulation of ulk1a restored autophagy flux and rescued cardiac dysfunction in ttntv-A animals. Together, our findings presented adult zebrafish as an in vivo animal model for studying AH in TTNtv DCM, demonstrated TTN loss of function is sufficient to trigger ttntv DCM in zebrafish, and uncovered ulk1a as a potential therapeutic target gene for TTNtv DCM.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Peixe-Zebra/genética , Mutação , Sarcômeros/genética , Sarcômeros/patologia
14.
J Pharmacol Sci ; 154(3): 175-181, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395518

RESUMO

Taurine (2-aminoethanesulfonic acid) is a free amino acid found ubiquitously and abundantly in mammalian tissues. Taurine content in the heart is approximately 20 mM, which is approximately 100 times higher than plasma concentration. The high intracellular concentration of taurine is maintained by the taurine transporter (TauT; Slc6a6). Taurine plays various roles, including the regulation of intracellular ion dynamics, calcium handling, and acting as an antioxidant in the heart. Some species, such as cats and foxes, have low taurine biosynthetic capacity, and dietary taurine deficiency can lead to disorders such as dilated cardiomyopathy and blindness. In humans, the relationship between dietary taurine deficiency and cardiomyopathy is not yet clear, but a genetic mutation related to the taurine transporter has been reported to be associated with dilated cardiomyopathy. On the other hand, many studies have shown an association between dietary taurine intake and age-related diseases. Notably, it has recently been reported that taurine declines with age and is associated with lifespan in worms and mice, as well as healthspan in mice and monkeys. In this review, we summarize the role of dietary and genetic taurine deficiency in the development of cardiomyopathy and aging.


Assuntos
Cardiomiopatia Dilatada , Humanos , Camundongos , Animais , Cardiomiopatia Dilatada/genética , Coração , Envelhecimento/genética , Taurina/metabolismo , Mamíferos/metabolismo
16.
Circ Genom Precis Med ; 17(2): e004301, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38415367

RESUMO

Dilated cardiomyopathy (DCM) is a common heart muscle disorder of nonischemic etiology associated with heart failure development and the risk of malignant ventricular arrhythmias and sudden cardiac death. A tailored approach to risk stratification and prevention of sudden cardiac death is required in genetic DCM given its variable presentation and phenotypic severity. Currently, advances in cardiogenetics have shed light on disease mechanisms, the complex genetic architecture of DCM, polygenic contributors to disease susceptibility and the role of environmental triggers. Parallel advances in imaging have also enhanced disease recognition and the identification of the wide spectrum of phenotypes falling under the DCM umbrella. Genotype-phenotype associations have been also established for specific subtypes of DCM, such as DSP (desmoplakin) or FLNC (filamin-C) cardiomyopathy but overall, they remain elusive and not readily identifiable. Also, despite the accumulated knowledge on disease mechanisms, certain aspects remain still unclear, such as which patients with DCM are at risk for disease progression or remission after treatment. Imagenetics, that is, the combination of imaging and genetics, is expected to further advance research in the field and contribute to precision medicine in DCM management and treatment. In the present article, we review the existing literature in the field, summarize the established knowledge and emerging data on the value of genetics and imaging in establishing genotype-phenotype associations in DCM and in clinical decision making for DCM patients.


Assuntos
Cardiomiopatia Dilatada , Humanos , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/terapia , Medicina de Precisão/métodos , Morte Súbita Cardíaca/etiologia , Arritmias Cardíacas/genética , Estudos de Associação Genética
17.
HGG Adv ; 5(2): 100274, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38358893

RESUMO

Pathogenic variants in the DES gene clinically manifest as progressive skeletal muscle weakness, cardiomyopathy with associated severe arrhythmias, and respiratory insufficiency, and are collectively known as desminopathies. While most DES pathogenic variants act via a dominant mechanism, recessively acting variants have also been reported. Currently, there are no effective therapeutic interventions for desminopathies of any type. Here, we report an affected individual with rapidly progressive dilated cardiomyopathy, requiring heart transplantation at age 13 years, in the setting of childhood-onset skeletal muscle weakness. We identified biallelic DES variants (c.640-13 T>A and c.1288+1 G>A) and show aberrant DES gene splicing in the affected individual's muscle. Through the generation of an inducible lentiviral system, we transdifferentiated fibroblast cultures derived from the affected individual into myoblasts and validated this system using RNA sequencing. We tested rationally designed, custom antisense oligonucleotides to screen for splice correction in these transdifferentiated cells and a functional minigene splicing assay. However, rather than correctly redirecting splicing, we found them to induce undesired exon skipping. Our results indicate that, while an individual precision-based molecular therapeutic approach to splice-altering pathogenic variants is promising, careful preclinical testing is imperative for each novel variant to test the feasibility of this type of approach for translation.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Adolescente , Humanos , Cardiomiopatias/genética , Cardiomiopatia Dilatada/genética , Mutação , Splicing de RNA/genética
18.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119699, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387507

RESUMO

As the genetic landscape of cardiomyopathies continues to expand, the identification of missense variants in disease-associated genes frequently leads to a classification of variant of uncertain significance (VUS). For the proper reclassification of such variants, functional characterization is an important contributor to the proper assessment of pathogenic potential. Several missense variants in the calcium transport regulatory protein phospholamban have been associated with dilated cardiomyopathy. However, >40 missense variants in this transmembrane peptide are currently known and most remain classified as VUS with little clinical information. Similarly, missense variants in cardiac myosin binding protein have been associated with hypertrophic cardiomyopathy. However, hundreds of variants are known and many have low penetrance and are often found in control populations. Herein, we focused on novel missense variants in phospholamban, an Ala15-Thr variant found in a 4-year-old female and a Pro21-Thr variant found in a 60-year-old female, both with a family history and clinical diagnosis of dilated cardiomyopathy. The patients also harbored a Val896-Met variant in cardiac myosin binding protein. The phospholamban variants caused defects in the function, phosphorylation, and dephosphorylation of this calcium transport regulatory peptide, and we classified these variants as potentially pathogenic. The variant in cardiac myosin binding protein alters the structure of the protein. While this variant has been classified as benign, it has the potential to be a low-risk susceptibility variant because of the structural change in cardiac myosin binding protein. Our studies provide new biochemical evidence for missense variants previously classified as benign or VUS.


Assuntos
Cardiomiopatia Dilatada , Feminino , Humanos , Pré-Escolar , Pessoa de Meia-Idade , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Peptídeos/metabolismo
20.
BMC Cardiovasc Disord ; 24(1): 86, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310240

RESUMO

OBJECTIVE: We aimed to explore the heterogeneity of neurons in heart failure with dilated cardiomyopathy (DCM). METHODS: Single-cell RNA sequencing (scRNA-seq) data of patients with DCM and chronic heart failure and healthy samples from GSE183852 dataset were downloaded from NCBI Gene Expression Omnibus, in which neuron data were extracted for investigation. Cell clustering analysis, differential expression analysis, trajectory analysis, and cell communication analysis were performed, and highly expressed genes in neurons from patients were used to construct a protein-protein interaction (PPI) network and validated by GSE120895 dataset. RESULTS: Neurons were divided into six subclusters involved in various biological processes and each subcluster owned its specific cell communication pathways. Neurons were differentiated into two branches along the pseudotime, one of which was differentiated into mature neurons, whereas another tended to be involved in the immune and inflammation response. Genes exhibited branch-specific differential expression patterns. FLNA, ITGA6, ITGA1, and MDK interacted more with other gene-product proteins in the PPI network. The differential expression of FLNA between DCM and control was validated. CONCLUSION: Neurons have significant heterogeneity in heart failure with DCM, and may be involved in the immune and inflammation response to heart failure.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Humanos , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Perfilação da Expressão Gênica , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/genética , Inflamação , Análise de Sequência de RNA , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...